
Denotational Semantics of General Payment

Primitives, and Its Payment System

Miao, ZhiCheng
Co-founder, Superfluid Finance

miao@superfluid.finance

October 31, 2022

Abstract

Payment systems in the information age are still modeled after their
analog predecessors. While electronic money payment systems do utilize
computing technology and the Internet, this paper presents a case that
true modernization can be reached by (a) making payments happening
continuously over time, (b) involving more than two parties in payment
if necessary, (c) having compositional financial contracts.

This paper first explores the foundation of modern payment systems,
which consists of a money distribution model, payment primitives, pay-
ment execution systems of financial contracts, and different forms of money
mediums. Then the paper uses denotational semantics to formally define
payment primitives for modern payment systems. By the end, this paper
includes an overview of the Superfluid protocol, a reference implementation
of the payment primitives, and its payment system.

This paper is the first in the series of yellowpapers about modern
payment systems dubbed “semantic money.”
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Introduction
It should be fair to say every aspect of money is controversial: the nature
of money, the value of money, money and banking, and monetary reconstruc-
tion. Two major schools of thought about the theory of money are the Austrian
school ([1]) and the Chicago school ([2]). That was before the appearance of the
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Internet-era version of monetary reconstruction, broadly defined as cryptocur-
rency, which challenges theories of money further and demands their updates
([3] [4]).

This yellow paper does not intend to address these controversies; instead, it
focuses on the function of money. According to Von Mises:

The function of money is to facilitate the business of the market by
acting as a common medium of exchange.1

How do different forms of money perform this function, especially in the
information age, when we increasingly use electronic forms of money?

This paper adds a new controversy to money, presenting a foundation of
what constitutes a modern payment system and a set of payment primitives for
the system to challenge the preconceived notions of how money can perform its
function of medium of exchange.

In part I, we shall first explore the foundation. Here we present a formal
definition of a payment system and its components. We then select a few relevant
approaches used in computer science useful for modeling and defining formal
specifications for the payment system.

One of the approaches is denotational semantics, which is used in part II of
the paper to define the general payment primitives. Along with the denotational
semantics, the paper also includes a restatement2 of it in Haskell programming
language ([5] [6] [7]).

In part III, we introduce a reference implementation of the general payment
primitives and its payment system called Superfluid Protocol, along with its
overview.

The end of the paper also includes notes on possible further investigations.

Part I

Foundation

1 Payment System

Here we present a definition of a payment system and its components.

Payment system It is solely defined by these components:

• money distribution models how monetary value is distributed amongst
bearers 3,

• payment primitives update money distribution,

• payment execution environment performs payment primitives encoded in
financial contracts,

1L. Von Mises, The theory of money and credit. Ludwig von Mises Institute, 2009, Chapter
One, Chapter I, § 1, p1.

2It is a borrowed term from common law: “restatement of the law”. In our case, the
denotative mathematical laws.

3(Banking & Finance) a person who presents a note or bill for payment. - Collins English
Dictionary
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• and forms of money medium are the “user interfaces” of money for the
bearers.

Modernization For its modern upgrade, the system should also have these
properties:

• Money can be distributed continuously over time, as opposed to being in
discrete chunks.

• Payment primitives can involve more than two parties, as opposed to being
only for a sender and a receiver.

• Financial systems should be compositional.

1.1 Money Distribution

A representation of money and its distribution proposed in “a unifying theory”
by Buldas, Saarepera, Steiner, et al. involves the following components:

• U is the set of monetary units.

• ν : U → N is the value function defining the value ν(u) of every value unit
u. The set N is the set of all natural numbers, but instead, we can use
any set of numerals that are totally ordered (e.g., integers, real numbers).

• β : U → B is the bearer function defining the bearer β(u) of a unit. B
is the set of possible bearers. The bearer is usually a legal construction
defining any type of legal entity, such as a person, a family, a company, a
state institution, etc.

This discrete nature of this money distribution model is schematically de-
picted in figure 1.

Figure 1: Schematic representation of discrete money distribution

1.1.1 Adding Context γ

But the discrete nature of the model does not provide the necessary element for
us to add the desired properties to the payment system. So here we propose a
modification that involves the usage of context (γ):

Note that in this model, context can be updated independently, while value
functions of the same money distribution can produce different monetary values.
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Figure 2: Schematic representation of money distribution with context

Components of Context Here are some possible components of context and
how they work:

• If time (t) is included in the context, then the monetary value of each mon-
etary unit can vary continuously over time. Time is part of the physical
reality, hence not changeable by the actors in the payment system.

• Any subset of monetary units can also have their value functions depend-
ing on the same information in context. This could enable payment prim-
itives that involve many parties. This set of information in context is
referred to as ctx :: SharedContext ; they can be changed over time by the
actors in the payment system.

For the purpose of this paper, the model of context is: γ = t× ctx.

1.1.2 Haskell Code Conventions Used

Before the first time this paper includes specification in Haskell, here are some
highlights of conventions in the code style.

Language Extensions The specification is written in Haskell with GHC2021
language set4.

Other notable extensions used in the paper are: FunctionalDependencies,
TypeFamilies, TypeFamilyDependencies, GADTs.

Indexed Types and Type Equality To make the specification free of spe-
cific choices of core data types in implementation, FunctionalDependencies,
TypeFamilies, and TypeFamilyDependencies are extensively used. As a con-
sequence, the type signature can look very cluttered. In order to address that,
type quality operator (∼) is also used. Here is an example snippets:

type (~) :: forall k. k -> k -> Constraint

monetaryValue :: ( mv ~ MD_MVAL md

, mu ~ MD_MU md

, ctx ~ MD_CTX md

4The complete set of the extensions is enumerated in https://downloads.haskell.org/

ghc/latest/docs/users_guide/exts/control.html#extension-GHC2021.
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)

=> md -> (mu, ctx) -> mv

The otherwise tedious type family synonyms “MD_XYZ md” are rewritten with
mv mu ctx with the help of (∼) operator.

1.1.3 Haskell Definition Of Money Distribution

As the innermost layer of a modern payment system, money distribution models
how monetary value is distributed amongst bearers.

class (Integral ν, Default ν) => MonetaryValue ν

class (Integral t, Default t) => Timestamp t

class Monoid ctx => SharedContext ctx

class Bearer brr

class Eq u => MonetaryUnit u

-- | Money distribution functions and indexed types.

class ( MonetaryValue (MD_MVAL md)

, Timestamp (MD_TS md)

-- t & mval should have the same representational type

, Coercible (MD_TS md) (MD_MVAL md)

, MonetaryUnit (MD_MU md)

, Bearer (MD_BRR md)

, SharedContext (MD_CTX md)

, Monoid md

) => MoneyDistribution md where

-- | Set of bearers.

bearers :: ( brr ~ MD_BRR md

)

=> md -> [brr]

-- | Set of monetary units.

monetaryUnits :: mu ~ MD_MU md

=> md -> [mu]

-- | Money distribution β function.

bearerOf :: ( mu ~ MD_MU md

, brr ~ MD_BRR md

)

=> md -> mu -> brr

-- | Money distribution ν function.

monetaryValueOf :: ( mv ~ MD_MVAL md

, mu ~ MD_MU md

, ctx ~ MD_CTX md

, t ~ MD_TS md

)
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=> md -> mu -> ctx -> t -> mv

type family MD_MVAL md = (mval :: Type) | mval -> md

type family MD_TS md = (t :: Type) | t -> md

type family MD_MU md = (mu :: Type) | mu -> md

type family MD_BRR md = (brr :: Type) | brr -> md

type family MD_CTX md = (ctx :: Type) | ctx -> md

1.2 Payment Primitives

A payment primitive is a data type with a generator function that produces
payment primitive from the shared context ctx, primitive specific argument
args, and timestamp t, along with an update of the shared context. Type
signature 1 is for the generator of payment primitive a:

genPrima :: ctx → argsa → t → prim× ctx (1)

Payment primitive data then can be used to create a delta update of money
distribution5:

runPrim :: prim → md (2)

Loosely speaking, it is considered primitive, if it can not be broken down
into other existing primitives, which result in the same money distribution;
additionally, primitives should be the only constructs in a payment system that
can update money distribution.

Updates are monoidal so that they can be incremental, and their parallel
executions can be modeled.

The best-known primitive is an instant transfer of monetary value between
one monetary unit to another. The introduction of context enables more prim-
itives to be defined, and this will be discussed in part II.

1.3 Payment Execution Environment

The purpose of a payment execution environment is to perform the actual pay-
ment primitives, where their computation interface, parallel evaluation strate-
gies, and payment system solvency are defined.

It is out of scope for this paper to survey in-depth the problem space of
the operational semantics of payment execution environments. Nonetheless, a
simplified model and some potential extensions are discussed briefly to place
payment primitives in the big picture.

1.3.1 Composing Financial Contracts

A financial contract is the execution context for payment primitives, including
their execution conditions, timing6, and execution order.

Inspired by the technique of composing financial contracts demonstrated in
[9], we define the type class for financial contracts as follows:

5Specifically being monoidal, that is in short a set that has associative binary operation
and an identity element. See https://ncatlab.org/nlab/show/monoid.

6Timing is a type of condition of which current system time is a factor
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-- | Composable financial contracts.

class MoneyDistribution md => FinancialContract fc md | fc -> md where

-- | Predicate of the execution condition of a financial contract.

fcPred :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> fc -> (md, ctx) -> t -> Bool

-- | Execute the payment primitives encoded in the financial

-- contract.

fcExec :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> fc -> (md, ctx) -> t -> ((md, ctx), fc)

We know that both md and ctx are constrained to be monoid, then (md, ctx)
must be monoidal too. With this, it is possible to build a combinatorial library
of financial contracts that can be used to construct more complex financial
contracts.

1.3.2 Simplified Execution Environment Models

Here are some models for the different payment execution environments.

Non-deterministic Sequential Execution Environment First, we define
a model for a non-deterministic sequential payment execution environment,
which includes a set of all financial contracts and a step-through function:

-- | Non-deterministic sequential payment execution environment.

class ( MoneyDistribution md

, FinancialContract fc md

, Monad env

) => NondetSeqPaymentExecEnv env md fc | env -> md, env -> fc where

-- | Monadically update a financial contract in the execution

-- environment.

fcMUpdate :: fc -> env ()

-- | Monadically select one financial contract from the execution

-- environment.

fcMSelect :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> t -> env (md, ctx, fc)

-- | Step through the execution environment.

penvStepThrough :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> t -> env (md, ctx)

-- Default implementation for the step through function.
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penvStepThrough t = do

(md, ctx, fc) <- fcMSelect t

if fcPred fc (md, ctx) t

then do

let ((md', ctx'), fc') = fcExec fc (md, ctx) t

fcMUpdate fc'

-- (<>) operator is the binary operator for monoidal types.

return ((md, ctx) <> (md', ctx'))

else return (md, ctx)

We do not assume that fcMSelect yields a predicate that evaluates to true;
since it could be an input from the external world. This won’t work with any
deterministic financial contract set.

The environment is a Monad, where different side effects for fcMSelect can
be encoded. However, arrows could be used instead for a more generalized
interface to computation[10].

Parallel Execution When the executions of payment primitives can be par-
allel, resource-sharing problems arise in their data storage when updating money
distribution, context, and financial contract sets.

To model the parallel execution, ones must first study the concurrent control
of the data storage system used ([11]), while formalism of parallel execution can
be best done using Petri Nets ([12], [13])7.

A model in Haskell will not be provided for now since it is out of the scope
of the paper.

Deterministic Execution To make the execution environment determinis-
tic, stronger ordering conditions must be provided to the financial contract type:

-- | Financial contract that can be totally ordered.

class ( MoneyDistribution md

, FinancialContract tofc md

, Ord tofc)

=> TotallyOrderedFinancialContract tofc md

-- | A partially ordered data type (incomplete definition).

class Poset a

-- omitting detailed interface of it.

-- | Financial contract that can be partially ordered.

class ( MoneyDistribution md

, FinancialContract tofc md

, Poset tofc)

=> PartiallyOrderedFinancialContract tofc md

Total ordered financial contract could be used to model deterministic se-
quential execution environment:

7Petri Nets World, https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php
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-- | Deterministic sequential payment execution environment.

class ( MoneyDistribution md

, TotallyOrderedFinancialContract tofc md

) => DetSeqPaymentExecEnv env md tofc | env -> md, env -> tofc where

-- | Update a financial contract in the execution environment.

--

-- Note:

--

-- * In order to keep well-ordering properties, the complexity

-- of this function can be at least as bad as updating a

-- sorted data structure £O(log(n))£.

fcUpdate :: fc -> env -> env

-- | Deterministically get the next financial contract

-- executable at a specific time.

fcNext :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> env -> (md, ctx, tofc, t)

-- | Update execution environment with new money distribution and

-- context.

penvUpdate :: ctx ~ MD_CTX md

=> env -> (md, ctx) -> env

-- | Deterministically step through the execution environment

penvDetStepThrough :: ( ctx ~ MD_CTX md

, Timestamp t

)

=> env -> (env, t)

-- Default implementation for the step through function.

penvDetStepThrough env = let

(md, ctx, fc, t) = fcNext env

((md', ctx'), fc') = fcExec fc (md, ctx) t

-- assert: fcPred fc (md, ctx) t

in (penvUpdate

(fcUpdate fc' env)

((md, ctx) <> (md', ctx'))

, t)

The environment is no longer monadic; that is to say, it is now fully deter-
ministic. Instead, the monadic interactions with the external world should use
fcInsert for adding new financial contracts to the environment.

A weaker condition, namely a poset (partially ordered) of financial contracts,
may enable deterministic parallel executions of payments. However, model in
Haskell will also not be provided for now.
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1.4 Payment System Solvency

While money distribution does not assign meaning to the range of monetary
values, negative values can have special meanings in real-world applications. In
the following analysis, we call any money unit with a negative monetary value
insolvent.

The detailed analysis of these solvency models is out of the scope of this
paper.

Buffer Based Solvency Treatment In a non-deterministic execution en-
vironment, we cannot determine when any financial contract will be executed.
That means there is always a chance a monetary unit could reach negative
monetary value.

To mitigate the uncertainty of execution time, we introduce a concept called
buffer. A buffer has a monetary value set aside in a solvency conditional financial
contract, such that if a solvency condition arises, the buffer may be drawn to
cover the loss introduced by the non-deterministic timing of the execution.

Deterministic Solvency Treatment Since fcNext returns what is the fol-
lowing financial contract executable at a specific time, this deterministic prop-
erty eliminates the need for the buffer.

On the other hand, it introduces a different type of systemic risk: a kind of
denial-of-service. Because the complexity of fcUpdate is O(log(n)), the system
may not be able to advance its system time until all the following executable
contracts are executed.

1.5 Money Mediums

A useful observation about existing money schemes is that they all
have some kind of monetary units that are physical or digital rep-
resentations of money. Examples are bills, coins, bank accounts,
Bitcoin UTXOs, etc.8

We call them money mediums, and we further separate them into two big
groups:

• Token and its Accounts - e.g., bank currency accounts. Each token is
its own centralized execution environment; bearers access their monetary
value through their accounts and execute financial contracts through the
token.

• Note - e.g., federal reserve notes, bills, coins and Bitcoin UTXOs, etc. The
execution environment is independent of the notes, but it needs notes to
complete the execution of financial contracts.

One of the main differences is from the “user interface” perspective. A bearer
expects to keep many notes in hands while maybe only needing a few accounts
for each token. Also, it is up to bearers to keep track of all their notes, while
tokens can keep track of most of the states for bearers; hence notes are more

8A. Buldas, M. Saarepera, J. Steiner, et al., “A unifying theory of electronic money and
payment systems,” TechRxiv. Preprint, vol. 2021, 2021, P3.
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decentralized and tokens are more centralized. Some also argue note-like model
is better for complex concurrent and distributed computing environment9.

1.5.1 Haskell Definition Of Money Mediums

Here are some toy models for non-deterministic sequential money tokens and
money notes:

type Address = String

-- | Toy model for non-deterministic sequential money token.

class ( MoneyDistribution md

, FinancialContract fc md

, NondetSeqPaymentExecEnv tk md fc

) => NondetSeqMoneyToken tk md fc where

-- | Customary interface for querying one's current account balance.

balanceOf :: mval ~ MD_MVAL md

=> Address -> tk mval

-- The rest would be just convenience interfaces for ~fcMInsert~

-- | A money note that is capable of encoding financial contract.

data MoneyNote md fc = ( MoneyDistribution md

, FinancialContract fc md

) => FinancialContractNote md fc

| MoneytaryUnitNote md

type NoteID = String

-- | A toy model for non-deterministic sequential money notes execution

-- environment.

class ( MoneyDistribution md

, FinancialContract fc md

, NondetSeqPaymentExecEnv env md fc

) => NondetSeqMoneyNotes env md fc where

-- | Find note by its ID. This should be used by ~fc~ to rehydrate

-- the its references to the notes.

findNote :: note ~ MoneyNote md fc

=> NoteID -> env note

-- | Customary interface for querying the note's current balance.

balanceIn :: ( mval ~ MD_MVAL md

, note ~ MoneyNote md fc

)

=> note -> env mval

It may seem tiny semantic differences between tokens and notes execution

9M. M. Chakravarty, J. Chapman, K. MacKenzie, et al., “The extended utxo model,”
in International Conference on Financial Cryptography and Data Security, Springer, 2020,
pp. 525–539, P2.
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environment, but it is on purpose. Their main difference lies mainly in their
“user experience” implementations.

2 Relevant Approaches

The focus of this paper is to formally define a set of payment primitives that
modernize our payment systems. However, to prevent reinventing wheels, we
should first discuss some approaches in computer science that help tackle this
challenge.

2.1 Functional Reactive Programming

Recall that we want our modern payment system to handle money distribution
continuously over time and its financial contracts to be compositional. A very
closely related software design paradigm best known to address those needs is
functional reactive programming (FRP). It was first introduced by Conal El-
liott & Paul Hudak in solving multimedia animations ([15]). Later, Hudak
also worked on [16] and [17], making FRP a more general framework for pro-
gramming hybrid systems with continuous behaviors in a high-level, declarative
manner.

After FRP got more adoption, it evolved into some variations that support
discrete semantics and some variations better suited for interactive systems.
However, in this paper, we will stick to and revisit the basic constructs of the
original formulation used in [15] from which we will draw inspiration.

Temporal Modeling and Behaviors Values that vary over continuous time
are called behaviors. They are first-class values and are built up compositionally.
That is what we want in modern payment systems also. The semantic function
of α-behaviors produces the value of type α of a behavior at a given time:

at : Behaviorα → Time → α (3)

Event Modeling Like behaviors, events are first-class values too. The se-
mantic function of α-event describes the time and information associated with
an occurrence of the event:

occ : Eventα → Time× α (4)

In modern payment systems, the payment primitives executed in payment
execution environments are one type of event. More types of events can be read
from the original paper10.

Reactivity They key to modeling the payment execution environment using
FRP is the reactivity, which makes behaviors reactive. Specifically, the behavior
b untilB e exhibits b’s behavior until e occurs, and then switches to a new
behavior encoded in e:

10C. Elliott and P. Hudak, “Functional reactive animation,” in Proceedings of the second
ACM SIGPLAN international conference on Functional programming, 1997, pp. 263–273,
section 2.3 Semantics of Events.
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untilB : Behaviorα → EventBehaviorα → Behaviorα

at [[b until B]] t = if t ⩽ te then at [[b]] t else at [[b′]] t

where(te, b
′) = occ[[e]]

(5)

Note that [[.]] is the denotational semantics notation to be introduced later.
In the context of modern payment systems, the occurrences of payment prim-

itives (events) change the behaviors of monetary units in terms of how much
monetary value it has over continuous. The building blocks of the financial con-
tracts should be about modeling these events and their reactivity declaratively.

2.2 Denotational Semantics

We also want a formal and precise specification of payment primitives. The title
of the paper includes denotational semantics: “it is a compositional style for
precisely specifying the meanings of languages, invented by Christopher Stra-
chey and Dana Scott in the 1960s ([18])”, and Conal Elliott proposed that
denotational semantics can also be applied to data types within a programming
language11.

To create denotational semantics for each syntactic category C, we should
specify:

• a mathematical model [[C]] of meanings, and

• a semantic function [[.]]C :: C → [[C]].

The syntactic category we are interested in is payment primitives, which we
should treat as FRP-style Behavior data types. In the following chapters, it is
also unambiguously referred to in short as [[.]]. Various [[.]] must be compositional,
i.e., must be defined by structural recursion.

It is important to note that our purpose in using the denotational semantics
is to give precise meaning to payment primitives independent of their imple-
mentations (which deal with performance, optimization, side effects, etc.). We
will spend part II exploring the denotational semantics for general payment
primitives in modern payment systems.

Part II

General Payment Primitives
The set of payment primitives supported in a payment system is general if (a)
the monetary value of each monetary unit can vary continuously over time (b)
monetary values can logically be shifted between two or more monetary units.

The extent of the generality of each payment system may vary. This paper
introduces a set of payment primitives that is general and serves as a starting
point for the readers to explore the space of modern payment systems.

11C. Elliott, “Denotational design with type class morphisms (extended version),” Lamb-
daPix, Tech. Rep. 2009-01, Mar. 2009. [Online]. Available: http://conal.net/papers/type-
class-morphisms, section 2, denotational semantics and data types.
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The specifications will be formally defined using denotational semantics,
along with a restatement in Haskell also applied as a constructive artifact
friendly to computer environment12.

3 Denotational Semantics

Here is the convention for symbols used in the formulas:

• M is the model for money distribution.

• m is for money distributions.

• U is the set of all money units in money distribution.

• u is for monetary units.

• ν is for monetary values.

• t is for time.

3.1 M - Syntax for Money Distribution

Recall in the definition of payment system previously, money distribution sits in
the core of the system, and that is the syntactic category M we will be dealing
with:

• The meaning of the mathematical model [[M]] is money distribution.

• Semantic function [[.]] :: M → [[M]] evaluates the expression of money
distribution, payment primitives, etc.

3.2 Money Distribution

Model This is the model for money distribution.

[[M u t ν]] = u → t → ν

[[.]] = M u t ν → (u → t → ν)
(6)

Monoidal With this model, M is also monoidal, hence compositional.

[[∅]] = λu → λt → ∅
[[ma ⊕mb]] = λu → λt → [[ma]] u t + [[mb]] u t

(7)

Knowing that function application category a → b is also monoidal:

∅ = λa → ∅
f ⊕ g = λa → f a⊕ g a

(8)

12One may argue for a restatement in Agda instead, for it has a richer dependently-type sys-
tem for desirable constructive proofs. This matter will be dealt in the “future investigations”
section of this paper.
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With some substitutions, we get the desired monoid homomorphism prop-
erty for M.

[[∅]] = ∅
[[ma ⊕mb]] = [[ma]]⊕ [[mb]]

(9)

3.3 Payment Primitives

A payment primitive prim is a model that produces a monoidal money distri-
bution, semantically representing an “update” to a money distribution:

[[prim]] = [[∆ m]] (10)

Law of Conservation of Value First of all, money distribution must obey
the law of conservation of value:

∀t ∈ R
∑
u∈U

[[m]] u t = 0 (11)

That is to say, at any given time, the sum of the monetary value of all
monetary units shall always equal zero. Zero is used to keep the semantical
meaning of payment systems simple and elegant. In its applications, a payment
system may use some special monetary unit accounting for negative monetary
values to accommodate concepts such as mining, minting, money printing, etc.

Restricted Money Distribution To come up with such lawful money dis-
tribution, we can divide and conquer. In a payment system, if we restrict that
only payment primitives can provide “updates” to their money distribution so
that money distribution is only a result of a sequence of payment primitive
updates; then, we can have these axioms as the basis for the proof.

Axiom A of Restricted Money Distributions First, we must impose the
law of conservation of value on payment primitives as an axiom in order to
prove inductively that such restricted money distribution satisfies the law of
conservation of value too.

law of conservation of value for payment primitives

∀t ∈ R(
∑
u∈U

[[prim]] u t = 0) (12)

Axiom B of Restricted Money Distributions

money distribution consists of updates from payment primitives

[[m]] = [[prim1]]⊕ [[prim2]]⊕ [[prim3]]⊕ · · ·
(13)
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Proof of Restricted Money Distributions satisfying the law of conserva-
tion of value.

In addition to the axioms, given:

(base case with empty money distribution is trivial)

∀t ∈ R
∑
u∈U

[[∅]] u t = 0

(monoid homomorphism)∑
u∈U

[[prim1 ⊕ prim2]] u t =
∑
u∈U

[[prim2]] u t⊕
∑
u∈U

[[prim2]] u t

We have:

∀t ∈ R.∑
u∈U

[[m]] u t

(applying Axiom B)

=
∑
u∈U

([[prim1]]⊕ [[prim2]]⊕ [[prim3]]⊕ · · · ) u t

(applying monoid homomorphism)

=
∑
u∈U

[[prim1]] u t⊕
∑
u∈U

[[prim2]] u t⊕
∑
u∈U

[[prim3]] u t⊕ · · ·

(applying Axiom A)

= 0

■

(14)

3.4 One-to-One Payment Primitives

Here are the primitives involving a sender (ua) and a receiver (ub) (one-to-one
payments).

Transfer Instant transferring of a fixed amount of monetary value x:

[[transfer ua ub x]] = λu → λt →
−x (ua = u)

x (ub = u)

0 (otherwise)

(15)

(Constant) Flow Flowing of monetary value at a constant rate of r at time
t′:
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[[flow ua ub r t′]] = λu → λt →
−r · (t− t′) (ua = u)

r · (t− t′) (ub = u)

0 (otherwise)

(16)

Decaying Flow Another way monetary value could flow is through an expo-
nential decay function13.

Symbolically, this process can be expressed by the following differential equa-
tion, where N is the quantity and λ is a positive rate called the exponential decay
constant:

dN

dt
= −λN (17)

The solution to this equation (see derivation below) is:

N(t) = N0e
−λt (18)

But a more convenient semantics of it uses the parameter called “distribution
limit” (θ) instead. In this formulation, a decaying flow distributes ϵ amount of

monetary value at a rate started at α and halving every time period of
ln(2)

λ
:

[[decayingF low ua ub θ λ t′]] = λu → λt →
α · e−λ(t′−t) − θ (ua = u)

−α · e−λ(t′−t) + θ (ub = u)

0 (otherwise)

(19)

For the simplicity of the later discussion, this form of payment primitive is
omitted.

3.5 Index Abstraction

To make primitives support more than two parties, we introduce an abstraction
called index.

An index (we use symbol k for them) has a function ρ which produces a real
number for each monetary unit:

ρ k :: u → R (20)

To make it meaningful, it must satisfy the following law:∑
u∈U

ρ k u = 1 (21)

Semantically, it represents a proportion of each money unit, and they must
add up to 1.

13https://en.wikipedia.org/wiki/Exponential_decay.
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3.6 Indexed Primitives

Let’s generalize the one-to-one payment primitives using index abstraction. We
use I subscript for the indexed versions of the primitives.

Indexed Transfer

[[transferI ka kb x]] = λu → λt →
− x · ρ ka u+ x · ρ kb u

(22)

Indexed (Constant) Flow

[[flowI ka kb r t′]] = λu → λt →
− r · (t− t′) · ρ ka u+ r · (t− t′) · ρ kb u

(23)

It should be straightforward to prove that they also satisfy the axiom A of
restricted money distribution thanks to the law of the index.

Universal Index Now one to one payment primitives can be redefined using
universal index (kuany):

ρ kua = λu → if u = ua then 1 else 0 (24)

It means that it is an index universally available for each monetary unit,
and its proportion is always 1 for that monetary unit and 0 for all others.

Proportional Distribution Primitives A special case of the indexed prim-
itives is to fix the sender side to be an universal index.

3.7 Network Abstraction

An even more general abstraction is to model participants involved a payment
primitive network (we use the symbol w for them).

It has the function ρ as in index, and it satisfies a different law:∑
u∈U

ρ w u = 0 (25)

3.8 Networked Primitives

Let’s generalize the basic payment primitives using network abstraction. We
use N subscript for the indexed versions of the primitives.

Shift We rename transfer to shift for networked instant payment primitive:

[[shiftN w x]] = λu → λt → x · ρ w u (26)

Networked (Constant) Flow

[[flowN w r t′]] = λu → λt → r · (t− t′) · ρ w u (27)
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3.9 Generality vs. Optimization

The question now is, should we use the most general form of semantics to guide
implementation?

The answer is most likely a no. Not because it is not useful; after all math-
ematical formula is about truth and perhaps also elegance in it, but because of
we may miss optimization opportunities needed in implementation when more
specialized versions are used instead14.

In part III, we will look into a reference implementation where these opti-
mizations are made.

4 Restatement in Haskell

Here is the denotational semantics of payment primitives of modern payment
system.

-- | Type synonym for [[M]].
type MoneyDistributionModel md = forall ν t u.

( MoneyDistribution md

, ν ~ MD_MVAL md

, t ~ MD_TS md

, u ~ MD_MU md

) => u -> t -> ν

-- | [[M]] - methematical model of meaning in money distribution.

data MoneyDistributionModel md = MkMoneyDistributionModel

(MoneyDistributionModel md)

-- | Semigroup class instance [[M]].
instance ( MoneyDistribution md

) => Semigroup (MoneyDistributionModel md) where

-- ⊕: monoid binary operator

(MkMoneyDistributionModel ma) <> (MkMoneyDistributionModel mb) =

MkMoneyDistributionModel (\u -> \t -> ma u t + mb u t)

-- | Monoid class instance [[M]].
instance ( MoneyDistribution md

) => Monoid (MoneyDistributionModel md) where

-- ∅: monoid empty set

mempty = MkMoneyDistributionModel (\_ -> \_ -> 0)

-- | Index abstraction.

class Eq u => Index k u | k -> u where

ρ :: k -> u -> Double

-- | Universal index.

data UniversalIndex u = MkUniversalIndex u

14We will not though discuss the subjective aspects, e.g. in software engineering princi-
ples such as YAGNI (https://en.wikipedia.org/wiki/You_aren’t_gonna_need_it), or user
experience perspective of the payment primitives.
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instance Eq u => Index (UniversalIndex u) u where

ρ (MkUniversalIndex u) u' = if u == u' then 1 else 0

-- | M' - syntactic category using index abstraction.

data M ν t u =

forall k1 k2. (Index k1 u, Index k2 u) => TransferI k1 k2 ν |

forall k1 k2. (Index k1 u, Index k2 u) => FlowI k1 k2 ν t

-- | Type synonym for M' using type family.

type M md = forall ν t u.

( MoneyDistribution md

, ν ~ MD_MVAL md

, t ~ MD_TS md

, u ~ MD_MU md

) => M ν t u

-- | [[.]] - semantic function of M.

sem :: MoneyDistribution md

=> M md -> MoneyDistributionModel md

sem (TransferI ka kb amount) = \u -> \_ ->

let x = fromIntegral amount

in ceiling $ -x * ρ ka u + x * ρ kb u

sem (FlowI ka kb r t') = \u -> \t ->

let x = fromIntegral $ -r * coerce(t - t')

in ceiling $ -x * ρ ka u + x * ρ kb u

-- GHC 9.4.2 bug re non-exhaustive pattern matching?

sem _ = error "huh?"

-- | [[.]] - semantic function of M.

semM :: MoneyDistribution md

=> M md -> MoneyDistributionModel md

semM s = MkMoneyDistributionModel (sem s)

Part III

Superfluid Protocol - A
Reference Implementation

Superfluid protocol (“the protocol”)15 is the first implementation of the deno-
tational semantics of payment primitives (though before it was formalized and
named so) on Ethereum Virtual Machine ([20]). The first version of the protocol
is written in Solidity programming language 16.

To better serve as a reference implementation of the modern payment sys-
tem formalized by this paper and its sequels, an implementation in Haskell was
created. It aims to implement the full specifications of (a) the denotational

15The code base is available at https://github.com/superfluid-finance/

protocol-monorepo/.
16https://soliditylang.org/ - About Solidity programming language.
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semantics of payment primitives, (b) compositional financial contracts for the
payment primitives, (c) token & note model of money mediums, and their exe-
cution environment.

This paper covers the overview of the implementation with regard to (a).

5 Real Time Balance

For the purpose of compositional financial contracts, it is useful to separate
monetary values that bearers can use immediately (called untappedValue in
code) from ones that are set aside for other financial purpose. The concept of
real time balance is thus created. Real time balance is a functorful17 of monetary
values. It can be converted to a single monetary value.

Since this is not the subject of this paper, it suffices to show its definition
instead:

-- Note that we omit the definition of AnyTypedValue here,

-- since it is not relevant to the idea here.

class ( MonetaryValue v

, Foldable rtbF

, Monoid (rtbF v)

, Eq (rtbF v)

) => RealTimeBalance rtbF v | rtbF -> v where

-- | Convert a single monetary value to a RTB value.

valueToRTB :: Proxy rtbF -> v -> rtbF v

-- | Net monetary value of a RTB value.

netValueOfRTB :: rtbF v -> v

netValueOfRTB = foldr (+) def

-- | Convert typed values to a RTB value.

typedValuesToRTB :: [AnyTypedValue v] -> rtbF v

-- | Get typed values from a RTB value.

typedValuesFromRTB :: rtbF v -> [AnyTypedValue v]

In the paper, we refer to the real time balance values as rtb, and its function
netV alueOfRTB is what matters the most here, it converts any rtb to the
monetary value which is what the model of money distribution needs.

6 Agreement Framework

The main tasks of the implementer of denotational payment primitives are:

• preserve the program correctness (and if possible, with proof of equiva-
lence),

17Bartosz Milewski has an excellent series on functors: https://bartoszmilewski.com/

2015/01/20/functors/, where he uses the term “functorful” to convey the idea of generalized
container.
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• optimize for efficient computations,

• and provide a software interface for it.

The protocol introduces agreement framework to address the optimization
needs and to provide a consistent software interface called “agreement” with
agreement laws for reasoning about the correctness.

6.1 Monetary Unit Data (MUD)

Recall that all monetary units have a monetary value function: ν :: u → N.
Agreement framework defines a concept called monetary unit data, and each

monetary unit has a set of them:

class ( SuperfluidCoreTypes sft

) => MonetaryUnitDataClass mud sft | mud -> sft where

-- | π function - balance provided (hear: π) by the monetary unit data.

balanceProvided

:: forall t rtb.

-- indexed type aliases

( t ~ SFT_TS sft

, rtb ~ SFT_RTB sft

)

=> mud -> t -> rtb

-- | A semigroup constrained monetary unit data type class.

--

-- Note: a. ~mud~ that doesn't have a binary function may also be referred

-- to as "non-scalable" ~mud~.

--

-- a. What can make a ~mud~ "scalable" then is exactly when it is an

-- actual semigroup. Since a new state can be merged onto the

-- previous state to a new single state. It is still worth mentioning

-- that it is only a sufficient condition, since a monoid could still

-- "cheat" by linearly grow its data size on each binary operation.

class ( MonetaryUnitDataClass smud sft

, Semigroup smud

) => SemigroupMonetaryUnitData smud sft

The π function produces real time balance at a particular time for mone-
tary unit data. How a monetary unit produces monetary value from its set of
monetary unit data is described in the “hierarchy of agreements” section.

6.2 Agreement Contract

Recall how a payment primitive generator should look like:

genPrima :: ctx → argsa → t → prim× ctx (28)

Shared context ctx is clearly the only data can be used by optimization, since
it is updated each time a primitive is generated. In the agreement framework,
a data type agreement contract in the shared context is to fulfill this role:
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-- | Agreement contract type class.

class ( SuperfluidCoreTypes sft

, Default ac

, MonetaryUnitDataClass ac sft

, Traversable (AgreementOperationOutputF ac) -- <= Foldable Functor

, Monoid (AgreementOperationOutput ac)

) => AgreementContract ac sft | ac -> sft where

-- | ω function - apply agreement operation ~ao~ (hear: ω) to the agreement

-- operation data ~ac~ to get a tuple of:

--

-- 1. An updated ~ac'~.

--

-- 2. A functorful delta of agreement monetary unit data ~muds∆~, which

-- then can be appended to existing ~mud∆~. This is what can make an

-- agreement scalable.

applyAgreementOperation

:: forall t ao aoo.

-- indexed type aliases

( t ~ SFT_TS sft

, ao ~ AgreementOperation ac

, aoo ~ AgreementOperationOutput ac

)

=> ac -> ao -> t -> (ac, aoo)

-- | ϕ' function - functorize the existential semigroup monetary unit data

-- of agreement operation output

functorizeAgreementOperationOutput

:: forall any_smud muds f.

( any_smud `IsAnyTypeOf` MPTC_Flip SemigroupMonetaryUnitData sft

, MonetaryUnitDataClass any_smud sft

-- indexed type aliases

, muds ~ AgreementOperationOutput ac

, f ~ AgreementOperationOutputF ac

)

=> Proxy any_smud

-> muds -> f any_smud

data family AgreementOperation ac :: Type

data family AgreementOperationOutputF ac :: Type -> Type

type family AgreementOperationOutput ac = (smuds :: Type) | smuds -> ac

The ω function (applyAgreementOperation) is the genPrim in the agree-
ment framework. It takes in a agreement contract, an operation onto it and
the current time; then it spits out an update of the agreement contract and a
functorful of new delta of monetary unit data.

Figure 3 is a illustration of the ω function “machinery”.
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Figure 3: Agreement Contract ω Function

It also illustrates that it is expected the process should respect the law of
conservation of value mandated by the restricted money distribution model.

It is also important to note that AgreementContract itself is also a Mone-
taryUnitDataClass, but it is not a semigroup, hence it is used to replace the
previous agreement contract data. This has optimization implications, as in
that if agreement contracts do not produce zero balance then they must be in-
cluded in the ν function, that can make the ν function O(N) to the number of
agreement contracts a monetary unit is associated with.

It may have been self evident that agreement contract is a analogy to the fact
that it encodes “ongoing relationships” like legal contracts do between bearers.
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7 Lens Data Accessors

In order to support index abstraction in the denotational payment primitives,
Monetary unit data are created with lens data accessors18:

-- representation of lenses

data Lens a b s t = Lens { view :: s -> a, update :: (b, s) -> t }

-- the pro-functor version of it

type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t

The pro-functor version of lens might seem very obscure at first, but its data
representation is rather self-explanatory: a lens is simply a pair of getter (view)
and setter (update) encoded in the data.

With the help of Lens, then we can create the payment primitives indepen-
dent of the choices between 1-to-1, 1-to-N, etc. Here are how they are defined
for each class of payment primitives:

8 Useful Agreements

8.1 Instant Value MUD

This is for agreements where value is instantly transferred.

class ( Default amuLs

, SuperfluidSystemTypes sft

) => MonetaryUnitLenses amuLs sft | amuLs -> sft where

untappedValue :: Lens amuLs (UntappedValue (SFT_MVAL sft))

type MonetaryUnitData :: Type -> Type -> Type

newtype MonetaryUnitData amuLs sft =

MkMonetaryUnitData { getMonetaryUnitLenses :: amuLs }

deriving (Default)

instance MonetaryUnitLenses amuLs sft

=> Semigroup (MonetaryUnitData amuLs sft) where

MkMonetaryUnitData a <> MkMonetaryUnitData b =

let c = a & over untappedValue (+ b^.untappedValue)

in MkMonetaryUnitData c

instance MonetaryUnitLenses amuLs sft

=> MonetaryUnitDataClass (MonetaryUnitData amuLs sft) sft where

balanceProvided (MkMonetaryUnitData a) _ =

typedValuesToRTB [mkAnyTypedValue $ a^.untappedValue]

Note that (a) lens operator (ˆ.) is the view function (getter) of data,
(b) semigroup operator (<>) defines how two monetary unit data can be
combined into one.

18B. Clarke, D. Elkins, J. Gibbons, et al., “Profunctor optics, a categorical update,” arXiv
preprint arXiv:2001.07488, 2020.
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8.2 Constant Flow Agreement (CFA) MUD

A more interesting case is where monetary value is changing continuously over
time at a constant rate:

class ( Default amuLs

, SuperfluidSystemTypes sft

) => MonetaryUnitLenses amuLs sft | amuLs -> sft where

settledAt :: Lens amuLs (SFT_TS sft)

settledValue :: Lens amuLs (UntappedValue (SFT_MVAL sft))

netFlowRate :: Lens amuLs (SFT_MVAL sft)

type MonetaryUnitData :: Type -> Type -> Type

newtype MonetaryUnitData amuLs sft =

MkMonetaryUnitData { getMonetaryUnitLenses :: amuLs }

deriving (Default)

instance MonetaryUnitLenses amuLs sft

=> Semigroup (MonetaryUnitData amuLs sft) where

MkMonetaryUnitData a <> MkMonetaryUnitData b =

let t = a^.settledAt

t' = b^.settledAt

settled∆ = MkUntappedValue $ a^.netFlowRate * fromIntegral (t' - t)

c = a & set settledAt t'

& over netFlowRate (+ b^.netFlowRate)

& over settledValue (+ (b^.settledValue + settled∆))

in MkMonetaryUnitData c

instance MonetaryUnitLenses amuLs sft

=> MonetaryUnitDataClass (MonetaryUnitData amuLs sft) sft where

balanceProvided (MkMonetaryUnitData a) t =

let b = uval_s + coerce (fr * fromIntegral (t - t_s))

in typedValuesToRTB [ mkAnyTypedValue b ]

where t_s = a^.settledAt

uval_s = a^.settledValue

fr = a^.netFlowRate

Note the implementation of semigroup binary operator, this is where the
optimization occurs: to use netF lowRate to fold monetary unit data into a
single value.

8.3 Decaying Flow Agreement (CFA) MUD

class ( Default amuLs

, SuperfluidSystemTypes sft

) => MonetaryUnitLenses amuLs sft | amuLs -> sft where

decayingFactor :: Lens amuLs (SFT_FLOAT sft)

settledAt :: Lens amuLs (SFT_TS sft)

αVal :: Lens amuLs (SFT_FLOAT sft)

ϵVal :: Lens amuLs (SFT_FLOAT sft)
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type MonetaryUnitData :: Type -> Type -> Type

newtype MonetaryUnitData amuLs sft =

MkMonetaryUnitData { getMonetaryUnitLenses :: amuLs }

deriving (Default)

instance MonetaryUnitLenses amuLs sft

=> Semigroup (MonetaryUnitData amuLs sft) where

MkMonetaryUnitData a <> MkMonetaryUnitData b =

let c = a & set settledAt (b^.settledAt)

& over αVal (\α -> α * exp (-λ * t_∆) - ϵ')
& over ϵVal (+ ϵ')

in MkMonetaryUnitData c

where ϵ' = b^.ϵVal
λ = b^.decayingFactor

t_∆ = fromIntegral (b^.settledAt - a^.settledAt)

instance MonetaryUnitLenses amuLs sft

=> MonetaryUnitDataClass (MonetaryUnitData amuLs sft) sft where

balanceProvided (MkMonetaryUnitData a) t =

let b = ceiling $ α * exp (-λ * t_∆) + ϵ
in typedValuesToRTB [ (mkAnyTypedValue . MkUntappedValue) b ]

where t_s = a^.settledAt

α = a^.αVal
ϵ = a^.ϵVal
λ = a^.decayingFactor

t_∆ = fromIntegral (t - t_s)

8.4 Universal Index (UIDX)

An universal index then can be implemented trivially by representing lenses
using the record syntax directly. For example, for constant flow monetary unit
data:

data MonetaryUnitLenses sft = MonetaryUnitLenses

{ settled_at :: SFT_TS sft

, settled_value :: UntappedValue (SFT_MVAL sft)

, net_flow_rate :: SFT_MVAL sft

} deriving (Generic)

deriving instance SuperfluidSystemTypes sft

=> Default (MonetaryUnitLenses sft)

-- | Monetary unit lenses for the universal index.

instance SuperfluidSystemTypes sft

=> CFMUD.MonetaryUnitLenses (MonetaryUnitLenses sft) sft where

settledAt = $(field 'settled_at)

settledValue = $(field 'settled_value)

netFlowRate = $(field 'net_flow_rate)

The field is a template Haskell function to generate lens from record fields.
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8.5 Proportional Distribution Index (PDIDX)

Proportional distribution index describes on-going subscription agreement con-
tracts between one publisher and many subscribers to the publisher’s distribu-
tion.

Its instant value variance is called “Instant Distribution Agreement (IDA)”.
Its constant flow variance is called “Constant Flow Distribution Agreement

(CFDA)”.

9 Hierarchy of Agreements

To finish, figure 4 is the illustration of data structures for the denotational
payment primitives implemented with agreement framework.

Figure 4: Agreement Data Structures

Note that with Root MUD, any monetary unit can traverse all its MUDs;
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and with Root Contract relations between monetary units can also be searched
by a simple algorithm.

This concludes the overview of the Superfluid protocol implementation. For
more details, one should refer to the code repository mentioned before.

Part IV

Notes on Future Investigations

10 Restatement in Agda, Correctness and Equiv-
alence Proofs

One of the advantages of using Haskell language to write the reference implemen-
tation was its industrial strength. Because of that, the implementation could be
easily integrated into a production code base without significant performance
compromises.

However, one major disadvantage is that it is not equipped with sufficient
apparatus for program correctness proofs. The best it can offer without using
more experimental Haskell features is to use QuickCheck19 to test that the
necessary laws are not violated using randomized test vectors.

To amend this deficiency, Agda programming language comes as a great
candidate for a different constructive restatement of the formal specification.

It is based on the insight of the deep connection (equivalence/isomorphism)
between logic and dependently typed programming, often called “the Curry–Howard
correspondence”, as discovered and developed during the 20th century (ex-
plained in [22] by Phillip Wadler as “Propositions as Types”). Agda being
a dependently typed functional programming language fully embodies this in-
sight, hence a good candidate for creating provable correct programs.

To learn more about Agda, refer to these footnotes 20 21 22.

11 Future Papers on Modern Payment System

The next yellow paper will formalize how the denotational payment primitives
can be stitched together using a powerful combinator library pattern briefly
described in [9].

The execution environments for these financial contracts are also fertile
ground for new ideas, from deterministic execution avoiding the usage of buffer,
to using distributed ledger technology to deep-embed these financial contracts
in the consensus layer.

19https://wiki.haskell.org/QuickCheck - Haskell wiki page for QuickCheck.
20https://plfa.github.io/ - Programming Language Foundations in Agda.
21https://wiki.portal.chalmers.se/agda/pmwiki.php - Agda Wiki.
22https://wiki.portal.chalmers.se/agda/Main/Community - Agda community page.
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12 General Accounting Domains & Real Time
Finance

Accounting, also known as accountancy, is the measurement, pro-
cessing, and communication of financial and non-financial informa-
tion about economic entities such as businesses and corporations.23

The real time balance introduced in this paper can be seen as an instance
in the general accounting domain, specifically for financial contracts in dealing
with payment primitives, which can be seen as a real time version of cash flow
accounting. Along with balance sheet accounting, and income statement ac-
counting, the conversion between these instances of general accounting domains
are often called “reconciliations”.

More work can be done on how to create a simple and elegant automation
system for reconciliations.

Real Time Finance We define the term real time finance to mean a
financial system where its payment system is modernized to handle money dis-
tribution continuously over time, its financial contracts are compositional, and
its general accounting domain is automated and processed in real time.

Conclusions
This paper defines what constitutes a modern payment system, with its pay-
ment primitives formally specified using denotational semantics and restated
using Haskell programming language. Along with a reference implementation
of the specification, we want to make a case that marrying with the progress of
computer science, the way of money performs its function of medium of exchange
can have a modern upgrade.

Absent any claim on whether a modern upgrade is needed; we invite the
readers to ask ourselves a question together: with electronic money increasingly
being used, should we keep emulating the function of money of its traditional
quality, or could we rethink what it may be in the information age?

In future work, we will look into deeper other topics of real time finance and
continue to refine the methodology used to achieve simple and precise specifi-
cations guiding correct and efficient engineering.

23B. E. Needles, M. Powers, and S. V. Crosson, Principles of accounting. Cengage Learning,
2013.
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